Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
1.
Methods Mol Biol ; 2776: 231-242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502508

RESUMO

In plants and algae, photosynthetic membranes have a unique lipid composition. They differ from all other cellular membranes by their very low amount of phospholipids, besides some phosphatidylglycerol (PG), and high proportion of glycolipids. These glycolipids are the uncharged galactolipids, that is, mono- and digalactosyldiacylglycerol (MGDG and DGDG), and an anionic sulfolipid, that is, sulfoquinovosyldiacylglycerol (SQDG). In all photosynthetic membranes analyzed to date, from cyanobacteria to algae, protists, and plants, the lipid quartet constituted by MGDG, DGDG, SQDG, and PG has been highly conserved, but the composition in fatty acids of these lipids can vary a lot from an organism to another. To better understand the chloroplast biogenesis, it is therefore essential to know their lipid content. Establishing chloroplast lipidome requires first to purify chloroplast from plant or algae tissue. Here we describe the methods to extract the lipid, quantify the lipid amount of the chloroplast, and qualify and quantify the different lipid classes that might be present in these fractions.


Assuntos
Cloroplastos , Lipidômica , Glicolipídeos , Galactolipídeos , Ácidos Graxos , Fosfolipídeos , Membrana Celular , Plantas
2.
Vaccine ; 42(4): 782-794, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38199923

RESUMO

Various plant-derived compounds can activate immune responses against bacterial infections, and this property contributes to them being developed as effective and safe adjuvants for vaccines. This study evaluated the potential adjuvant effects of a galactolipid-enriched fraction generated from the medicinal plant Crassocephalum rabens (designated CRA). Heat shock protein 60 of periodontal disease pathogen Actinobacillus actinomycetemcomitans (AaHSP60) was taken as an antigen and mixed with CRA. The AaHSP60/CRA mixture was then injected intraperitoneally into the BALB/c mice. Titers and affinity of specific antibodies were measured by ELISA. Cytokine profiles in mouse serum or culture media of AaHSP60/CRA-treated splenocytes were analyzed by cytokine multiplex assay and ELISA kits. B cell differentiation and macrophage activation were determined by phenotyping. CRA dramatically enhanced specific antibody titers and induced Ig class switch, as shown by increases in the IgG2a, IgG2b, and IgG3 proportions of total Ig in mouse serum. Furthermore, CRA-induced anti-AaHSP60 antibodies had cross-reactivity to other bacterial HSP60s. Cell-based and animal results demonstrated that CRA induced the release of IL-21 and B cell activating factor (BAFF), which stimulated B cell differentiation. CRA enhanced cell proliferation, uptake ability, and antigen presentation in mouse phagocytes. CRA served as a vaccine adjuvant that enhance mouse immunity against pathogenic antigens. CRA strengthened the activation and capabilities of phagocytes and B cells. Therefore, CRA may be a promising adjuvant for bacterial vaccines including periodontal disease.


Assuntos
Formação de Anticorpos , Doenças Periodontais , Animais , Camundongos , Adjuvantes de Vacinas , Galactolipídeos , Adjuvantes Imunológicos , Interleucina-4 , Imunoglobulina G , Camundongos Endogâmicos BALB C
3.
Chem Phys Lipids ; 258: 105361, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981224

RESUMO

The use of Nuclear Magnetic Resonance spectroscopy for studying lipid digestion in vitro most often consists of quantifying lipolysis products after they have been extracted from the reaction medium using organic solvents. However, the current sensitivity level of NMR spectrometers makes possible to avoid the extraction step and continuously quantify the lipids directly in the reaction medium. We used real-time 1H NMR spectroscopy and guinea pig pancreatic lipase-related protein 2 (GPLRP2) as biocatalyst to monitor in situ the lipolysis of monogalactosyl diacylglycerol (MGDG) in the form of mixed micelles with the bile salt sodium taurodeoxycholate (NaTDC). Residual substrate and lipolysis products (monogalactosyl monoacylglycerol (MGMG); monogalactosylglycerol (MGG) and octanoic acid (OA) were simultaneously quantified throughout the reaction thanks to specific proton resonances. Lipolysis was complete with the release of all MGDG fatty acids. These results were confirmed by thin layer chromatography (TLC) and densitometry after lipid extraction at different reaction times. Using diffusion-ordered NMR spectroscopy (DOSY), we could also estimate the diffusion coefficients of all the reaction compounds and deduce the hydrodynamic radius of the lipid aggregates in which they were present. It was shown that MGDG-NaTDC mixed micelles with an initial hydrodynamic radius rH of 7.3 ± 0.5 nm were changed into smaller micelles of NaTDC-MGDG-MGMG of 2.3 ± 0.5 nm in the course of the lipolysis reaction, and finally into NaTDC-OA mixed micelles (rH of 2.9 ± 0.5 nm) and water soluble MGG. These results provide a better understanding of the digestion of galactolipids by PLRP2, a process that leads to the complete micellar solubilisation of their fatty acids and renders their intestinal absorption possible.


Assuntos
Galactolipídeos , Micelas , Animais , Cobaias , Hidrólise , Galactolipídeos/química , Galactolipídeos/metabolismo , Ácidos e Sais Biliares , Lipólise , Ácidos Graxos/metabolismo , Espectroscopia de Ressonância Magnética , Digestão
4.
Plant Physiol ; 194(3): 1692-1704, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37962588

RESUMO

Dark-germinated angiosperm seedlings develop chloroplast precursors called etioplasts in cotyledon cells. Etioplasts develop lattice membrane structures called prolamellar bodies (PLBs), where the chlorophyll intermediate protochlorophyllide (Pchlide) forms a ternary complex with NADPH and light-dependent NADPH:Pchlide oxidoreductase (LPOR). The lipid bilayers of etioplast membranes are mainly composed of galactolipids, which play important roles in membrane-associated processes in etioplasts. Although etioplast membranes also contain 2 anionic lipids, phosphatidylglycerol (PG) and sulfoquinovosyldiacylglycerol (SQDG), their roles are unknown. To determine the roles of PG and SQDG in etioplast development, we characterized etiolated Arabidopsis (Arabidopsis thaliana) mutants deficient in PG and SQDG biosynthesis. A partial deficiency in PG biosynthesis loosened the lattice structure of PLBs and impaired the insertion of Mg2+ into protoporphyrin IX, leading to a substantial decrease in Pchlide content. Although a complete lack of SQDG biosynthesis did not notably affect PLB formation and Pchlide biosynthesis, lack of SQDG in addition to partial PG deficiency strongly impaired these processes. These results suggested that PG is required for PLB formation and Pchlide biosynthesis, whereas SQDG plays an auxiliary role in these processes. Notably, PG deficiency and lack of SQDG oppositely affected the dynamics of LPOR complexes after photoconversion, suggesting different involvements of PG and SQDG in LPOR complex organization. Our data demonstrate pleiotropic roles of anionic lipids in etioplast development.


Assuntos
Arabidopsis , Protoclorifilida , NADP , Membranas , Arabidopsis/genética , Cloroplastos , Galactolipídeos , Fosfatidilgliceróis
5.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003299

RESUMO

Glycerol-3-phosphate acyltransferase GPAT9 catalyzes the first acylation of glycerol-3-phosphate (G3P), a committed step of glycerolipid synthesis in Arabidopsis. The role of GPAT9 in Brassica napus remains to be elucidated. Here, we identified four orthologs of GPAT9 and found that BnaGPAT9 encoded by BnaC01T0014600WE is a predominant isoform and promotes seed oil accumulation and eukaryotic galactolipid synthesis in Brassica napus. BnaGPAT9 is highly expressed in developing seeds and is localized in the endoplasmic reticulum (ER). Ectopic expression of BnaGPAT9 in E. coli and siliques of Brassica napus enhanced phosphatidic acid (PA) production. Overexpression of BnaGPAT9 enhanced seed oil accumulation resulting from increased 18:2-fatty acid. Lipid profiling in developing seeds showed that overexpression of BnaGPAT9 led to decreased phosphatidylcholine (PC) and a corresponding increase in phosphatidylethanolamine (PE), implying that BnaGPAT9 promotes PC flux to storage triacylglycerol (TAG). Furthermore, overexpression of BnaGPAT9 also enhanced eukaryotic galactolipids including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), with increased 36:6-MGDG and 36:6-DGDG, and decreased 34:6-MGDG in developing seeds. Collectively, these results suggest that ER-localized BnaGPAT9 promotes PA production, thereby enhancing seed oil accumulation and eukaryotic galactolipid biosynthesis in Brassica napus.


Assuntos
Arabidopsis , Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Galactolipídeos/metabolismo , Glicerol/metabolismo , Escherichia coli/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Sementes/genética , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Fosfatídicos/metabolismo , Óleos de Plantas/metabolismo , Fosfatos/metabolismo , Regulação da Expressão Gênica de Plantas
6.
New Phytol ; 239(5): 1771-1789, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37366020

RESUMO

Plastoglobules (PGs) contiguous with the outer leaflets of thylakoid membranes regulate lipid metabolism, plastid developmental transitions, and responses to environmental stimuli. However, the function of OsFBN7, a PG-core fibrillin gene in rice, has not been elucidated. Using molecular genetics and physiobiochemical approaches, we observed that OsFBN7 overexpression promoted PG clustering in rice chloroplasts. OsFBN7 interacted with two KAS I enzymes, namely OsKAS Ia and OsKAS Ib, in rice chloroplasts. Lipidomic analysis of chloroplast subcompartments, including PGs in the OsFBN7 overexpression lines, confirmed that levels of diacylglycerol (DAG), a chloroplast lipid precursor and monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), the main chloroplast membrane lipids, were increased in PGs and chloroplasts. Furthermore, OsFBN7 enhanced the abundances of OsKAS Ia/Ib in planta and their stability under oxidative and heat stresses. In addition, RNA sequencing and real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analyses showed that the expression of the DAG synthetase gene PAP1 and MGDG synthase gene MDG2 was upregulated by OsFBN7. In conclusion, this study proposes a new model in which OsFBN7 binds to OsKAS Ia/Ib in chloroplast and enhances their abundance and stability, thereby regulating the chloroplast and PG membrane lipids involved in the formation of PG clusters.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Cloroplastos/metabolismo , Galactolipídeos/metabolismo , Tilacoides/metabolismo , Lipídeos de Membrana/metabolismo , Resposta ao Choque Térmico
7.
Biochimie ; 215: 12-23, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37062468

RESUMO

Pancreatic lipase related-protein 2 (PLRP2) exhibits remarkable galactolipase and phospholipase A1 activities, which depend greatly on the supramolecular organization of the substrates and the presence of surfactant molecules such as bile salts. The objective of the study was to understand the modulation of the adsorption mechanisms and enzymatic activity of Guinea pig PLRP2 (gPLRP2), by the physical environment of the enzyme and the physical state of its substrate. Langmuir monolayers were used to reproduce homogeneous and heterogeneous photosynthetic model membranes containing galactolipids (GL), and/or phospholipids (PL), and/or phytosterols (pS), presenting uncharged or charged interfaces. The same lipid mixtures were also used to form micrometric liposomes, and their gPLRP2 catalyzed digestion kinetics were investigated in presence or in absence of bile salts (NaTDC) during static in vitro, so called "bulk", digestion. The enzymatic activity of gPLRP2 onto the galactolipid-based monolayers was characterized with an optimum activity at 15 mN/m, in the absence of bile salts. gPLRP2 showed enhanced adsorption onto biomimetic model monolayer containing negatively charged lipids. However, the compositional complexity in the heterogeneous uncharged model systems induced a lag phase before the initiation of lipolysis. In bulk, no enzymatic activity could be demonstrated on GL-based liposomes in the absence of bile salts, probably due to the high lateral pressure of the lipid bilayers. In the presence of NaTDC (4 mM), however, gPLRP2 showed both high galactolipase and moderate phospholipase A1 activities on liposomes, probably due to a decrease in packing and lateral pressure upon NaTDC adsorption, and subsequent disruption of liposomes.


Assuntos
Lipase , Lipossomos , Animais , Cobaias , Hidrólise , Fosfolipases A1 , Adsorção , Lipase/química , Fosfolipídeos/metabolismo , Galactolipídeos , Ácidos e Sais Biliares
8.
Chem Phys Lipids ; 252: 105291, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36918051

RESUMO

Galactolipids are the main lipids from plant photosynthetic membranes and they can be digested by pancreatic lipase related protein 2 (PLRP2), an enzyme found in the pancreatic secretion in many animal species. Here, we used transmission Fourier-transform infrared spectroscopy (FTIR) to monitor continuously the hydrolysis of galactolipids by PLRP2, in situ and in real time. The method was first developed with a model substrate, a synthetic monogalactosyl diacylglycerol with 8-carbon acyl chains (C8-MGDG), in the form of mixed micelles with a bile salt, sodium taurodeoxycholate (NaTDC). The concentrations of the residual substrate and reaction products (monogalactosylmonoglyceride, MGMG; monogalactosylglycerol, MGG; octanoic acid) were estimated from the carbonyl and carboxylate vibration bands after calibration with reference standards. The results were confirmed by thin layer chromatography analysis (TLC) and specific staining of galactosylated compounds with thymol and sulfuric acid. The method was then applied to the lipolysis of more complex substrates, a natural extract of MGDG with long acyl chains, micellized with NaTDC, and intact chloroplasts isolated from spinach leaves. After a calibration performed with α-linolenic acid, the main fatty acid (FA) found in plant galactolipids, FTIR allowed quantitative measurement of chloroplast lipolysis by PLRP2. A full release of FA from membrane galactolipids was observed, that was not dependent on the presence of bile salts. Nevertheless, the evolution of amide vibration band in FTIR spectra suggested the interaction of membrane proteins with NaTDC and lipolysis products.


Assuntos
Galactolipídeos , Micelas , Animais , Galactolipídeos/química , Galactolipídeos/metabolismo , Spinacia oleracea/química , Spinacia oleracea/metabolismo , Ácidos Graxos/metabolismo , Espectrofotometria Infravermelho , Cloroplastos/metabolismo , Digestão
9.
Plant Physiol ; 192(1): 426-441, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36805986

RESUMO

Glycerolipids are the most abundant lipids in microalgae, and glycerol-3-phosphate:acyl-CoA acyltransferase (GPAT) plays an important role in their biosynthesis. However, the biochemical and biological functions of algal GPAT remain poorly characterized. Here, we characterized the endoplasmic reticulum (ER)-associated GPAT of the model unicellular green alga Chlamydomonas reinhardtii (CrGPATer). Enzymatic assays indicated that CrGPATer is an sn-1 acyltransferase using a variety of acyl-CoAs as the acyl donor. Subcellular localization revealed that CrGPATer was associated with ER membranes and lipid droplets. We constructed overexpression (OE) and knockdown (KD) transgenic C. reinhardtii lines to investigate the in vivo function of CrGPATer. Lipidomic analysis indicated that CrGPATer OE enhanced the cellular content of galactolipids, especially monogalactosyldiacylglycerol, under nitrogen deficiency stress. Correspondingly, CrGPATer KD lines contained lower contents of galactolipids than the control. Feeding experiments with labeled phosphatidic acid revealed that the intermediate of the eukaryotic Kennedy pathway could be used for galactolipid biosynthesis in the chloroplasts. These results provided multiple lines of evidence that the eukaryotic Kennedy pathway mediated by CrGPATer may be involved in galactolipid biosynthesis in C. reinhardtii. OE of CrGPATer significantly increased the content of triacylglycerol and the yield of biomass. Moreover, the content and yield of 1, 3-olein-2-palmitin, a high-value lipid that can be used as an alternative for human milk fat in infant formula, were significantly enhanced in the OE transgenic lines. Taken together, this study provided insights into the biochemical and biological functions of CrGPATer and its potential as a genetic engineering target in functional lipid manufacturing.


Assuntos
Galactolipídeos , Microalgas , Humanos , Aciltransferases/metabolismo , Galactolipídeos/metabolismo , Glicerol/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/genética , Glicerol-3-Fosfato O-Aciltransferase/química , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Microalgas/genética , Microalgas/metabolismo , Fosfatos/metabolismo , Plantas/metabolismo , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos
10.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835138

RESUMO

Sulfur (S) deprivation leads to abiotic stress in plants. This can have a significant impact on membrane lipids, illustrated by a change in either the lipid class and/or the fatty acid distribution. Three different levels of S (deprivation, adequate, and excess) in the form of potassium sulfate were used to identify individual thylakoid membrane lipids, which might act as markers in S nutrition (especially under stress conditions). The thylakoid membrane consists of the three glycolipid classes: monogalactosyl- (MGDG), digalactosyl- (DGDG), and sulfoquinovosyl diacylglycerols (SQDG). All of them have two fatty acids linked, differing in chain length and degree of saturation. LC-ESI-MS/MS served as a powerful method to identify trends in the change in individual lipids and to understand strategies of the plant responding to stress. Being a good model plant, but also one of the most important fresh-cut vegetables in the world, lettuce (Lactuca sativa L.) has already been shown to respond significantly to different states of sulfur supply. The results showed a transformation of the glycolipids in lettuce plants and trends towards a higher degree of saturation of the lipids and an increased level of oxidized SQDG under S-limiting conditions. Changes in individual MGDG, DGDG, and oxidized SQDG were associated to S-related stress for the first time. Promisingly, oxidized SQDG might even serve as markers for further abiotic stress factors.


Assuntos
Galactolipídeos , Espectrometria de Massas em Tandem , Glicolipídeos , Ácidos Graxos/análise , Lipídeos de Membrana , Plantas
11.
Sci Rep ; 13(1): 259, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604524

RESUMO

The lipid composition of thylakoid membranes is conserved from cyanobacteria to green plants. However, the biosynthetic pathways of galactolipids, the major components of thylakoid membranes, are known to differ substantially between cyanobacteria and green plants. We previously reported on a transformant of the unicellular rod-shaped cyanobacterium Synechococcus elongatus PCC 7942, namely SeGPT, in which the synthesis pathways of the galactolipids monogalactosyldiacylglycerol and digalactosyldiacylglycerol are completely replaced by those of green plants. SeGPT exhibited increased galactolipid content and could grow photoautotrophically, but its growth rate was slower than that of wild-type S. elongatus PCC 7942. In the present study, we investigated pleiotropic effects that occur in SeGPT and determined how its increased lipid content affects cell proliferation. Microscopic observations revealed that cell division and thylakoid membrane development are impaired in SeGPT. Furthermore, physiological analyses indicated that the bioenergetic state of SeGPT is altered toward energy storage, as indicated by increased levels of intracellular ATP and glycogen. We hereby report that we have identified a new promising candidate as a platform for material production by modifying the lipid synthesis system in this way.


Assuntos
Galactolipídeos , Synechococcus , Galactolipídeos/metabolismo , Synechococcus/metabolismo , Tilacoides/metabolismo , Glicogênio/metabolismo
12.
Food Chem ; 402: 134209, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126576

RESUMO

Cocoa powder is a highly consumed product all over the world which could be substituted by cheaper raw materials resulting in food fraud. In this work, a non-targeted metabolomics approach based on the use of reversed-phase liquid chromatography coupled to high-resolution mass spectrometry was developed to carry out the characterization of cocoa powder samples adulterated, at two different levels, with carob flour, soy flour, and chicory. The sample preparation protocol and the chromatographic parameters were optimized to extract and detect the highest number of molecular features. Both non-supervised and supervised statistical methods were employed to analyze the most significant variables that gave rise to group discrimination. From the 21 and 37 significant variables analyzed in positive and negative ionization modes, respectively, a total of 20 were tentatively identified. Different families of compounds including flavonoids, fatty acids, terpenoids, lysophospholipids, and a galactolipid could be pointed out as cocoa adulteration markers.


Assuntos
Chocolate , Cromatografia Líquida de Alta Pressão/métodos , Chocolate/análise , Galactolipídeos , Espectrometria de Massas/métodos , Metabolômica/métodos , Flavonoides/análise , Ácidos Graxos , Lisofosfolipídeos , Terpenos/análise
13.
Crit Rev Food Sci Nutr ; 63(20): 4655-4674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34839771

RESUMO

Most lipids in our diet come under the form of triacylglycerols that are often redispersed and stabilized by surfactants in processed foods. In plant however, lipid assemblies constitute interesting sources of natural bioactive and functional ingredients. In most photosynthetic sources, polar lipids rich in ω3 fatty acids are concentrated. The objective of this review is to summarize all the knowledge about the physico-chemical composition, digestive behavior and oxidative stability of plant polar lipid assemblies to emphasize their potential as functional ingredients in human diet and their potentialities to substitute artificial surfactants/antioxidants. The specific composition of plant membrane assemblies is detailed, including plasma membranes, oil bodies, and chloroplast; emphasizing its concentration in phospholipids, galactolipids, peculiar proteins, and phenolic compounds. These molecular species are hydrolyzed by specific digestive enzymes in the human gastrointestinal tract and reduced the hydrolysis of triacylglycerols and their subsequent absorption. Galactolipids specifically can activate ileal break and intrinsically present an antioxidant (AO) activity and metal chelating activity. In addition, their natural association with phenolic compounds and their physical state (Lα state of digalactosyldiacylglycerols) in membrane assemblies can enhance their stability to oxidation. All these elements make plant membrane molecules and assemblies very promising components with a wide range of potential applications to vectorize ω3 polyunsaturated fatty acids, and equilibrate human diet.


Assuntos
Galactolipídeos , Fosfolipídeos , Humanos , Galactolipídeos/metabolismo , Triglicerídeos/metabolismo , Oxirredução , Antioxidantes/metabolismo , Estresse Oxidativo
14.
Plant Physiol ; 191(1): 87-95, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36189956

RESUMO

Photosystem II (PSII) contains many lipid molecules that are essential for the function and maintenance of PSII. Under strong light conditions, PSII complexes are dynamically modified during the repair process; however, the molecular mechanism of the dynamic changes in the PSII structure is still unclear. In the present study, we investigated the role of a lipase in the repair of PSII in Synechocystis sp. PCC 6803. We identified a protein encoded by the sll1969 gene, previously named lipase A (lipA), in the Synechocystis sp. PCC 6803 genome as a candidate for the lipase involved in PSII repair. Recombinant protein expressed in Escherichia coli cells hydrolyzed fatty acids at the sn-1 position of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol as well as triacylglycerol esterified with stearic acids. PSII repair in a disrupted mutant of the lipA gene was suppressed by the slow degradation of damaged D1 protein under strong light. The level of the PSII dimer remained higher in lipA mutant cells than wild-type (WT) cells under strong light. LipA protein was associated with the PSII dimer in vivo, and recombinant LipA protein decomposed PSII dimers purified from WT cells to monomers by reducing MGDG content in the PSII complex. These results indicate that LipA reacts with PSII dimers, dissociates them into monomers by digesting MGDG, and enhances D1 degradation during PSII repair.


Assuntos
Complexo de Proteína do Fotossistema II , Synechocystis , Complexo de Proteína do Fotossistema II/metabolismo , Galactolipídeos/metabolismo , Synechocystis/metabolismo , Fotossíntese , Lipase/metabolismo , Luz
15.
Colloids Surf B Biointerfaces ; 220: 112933, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279762

RESUMO

The rapid and preferential adsorption of a gastric lipase recombinant dog gastric lipase (rDGL) in heterogeneous films of phospholipids and triacylglycerols has previously been unveiled using Langmuir films analyzed by tensiometry, ellipsometry and Langmuir-Blodgett transfer coupled to atomic force microscopy. Here we invest the adsorption behavior of rDGL in heterogeneous galactolipid and mixed galactolipid-phospholipid or galactolipid-phospholipid-phytosterol films representative of plant membrane. Again rDGL, preferentially got adsorbed at the expanded lipid phases of the films underlining the genericity of such adsorption behavior. The addition of phytosterols to these mixtures resulted in the creation of defects, favoring the adsorption of rDGL at the fluid phases, but also improving the adsorption capacities of the lipase at the phase boundaries and towards the defects in the condensed phase. rDGL, like all gastric lipases, does not show any activity on galactolipids and phospholipids but its adsorption impacts their lateral organization and may change the adsorption and activity of other lipolytic enzymes in the course of digestion.


Assuntos
Galactolipídeos , Fitosteróis , Cães , Animais , Adsorção , Fosfolipídeos , Lipase , Propriedades de Superfície
16.
Nutrients ; 14(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36235807

RESUMO

Digalactosyldiacylglycerol- (DGDG-) monoestolide is a characteristic glycolipid in oats. DGDG-monoestolides possess a unique structure whereby a fatty acid of DGDG is replaced by a fatty acid ester of hydroxy fatty acid (FAHFA). While the physiological effects of DGDG and FAHFA have been reported previously, the effects of DGDG-monoestolides are unknown. Hence, we isolated a major DGDG-monoestolide molecular species from oats, analyzed its structure, and evaluated its anti-inflammatory effect. Based on GC-MS, MS/MS, and NMR analyses, the isolated compound was identified as a DGDG-monoestolide that contains the linoleic acid ester of 15-hydroxy linoleic acid (LAHLA) and linoleic acid (i.e., DGDG-LAHLA). The isolated DGDG-LAHLA was evaluated for its anti-inflammatory effect on LPS-stimulated RAW264 cells. The production of nitric oxide and cytokines (IL-6, TNF-α, and IL-10) were significantly decreased by DGDG-LAHLA, suggesting the anti-inflammatory effect of DGDG-LAHLA for the first time. In addition, our data showed a pronounced uptake of DGDG-LAHLA by cells. Some compounds corresponding to the predicted DGDG-LAHLA metabolites were also detected, suggesting that both intact DGDG-LAHLA and its metabolites may contribute to the above anti-inflammatory activities. These results are expected to expand the availability of oats as a functional food.


Assuntos
Avena , Interleucina-10 , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Avena/química , Grão Comestível/metabolismo , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Galactolipídeos/química , Galactolipídeos/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Ácido Linoleico/metabolismo , Lipopolissacarídeos/metabolismo , Óxido Nítrico/metabolismo , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/metabolismo
17.
Physiol Plant ; 174(5): e13769, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36018559

RESUMO

Senescence in plants enables resource recycling from senescent leaves to sink organs. Under stress, increased production of reactive oxygen species (ROS) and associated signalling activates senescence. However, senescence is not always associated with stress since it has a prominent role in plant development, in which the role of ROS signalling is less clear. To address this, we investigated lipid metabolism and patterns of lipid peroxidation related to signalling during sequential senescence in first-emerging barley leaves grown under natural light conditions. Leaf fatty acid compositions were dominated by linolenic acid (75% of total), the major polyunsaturated fatty acid (PUFA) in galactolipids of thylakoid membranes, known to be highly sensitive to peroxidation. Lipid catabolism during senescence, including increased lipoxygenase activity, led to decreased levels of PUFA and increased levels of short-chain saturated fatty acids. When normalised to leaf area, only concentrations of hexanal, a product from the 13-lipoxygenase pathway, increased early upon senescence, whereas reactive electrophile species (RES) from ROS-associated lipid peroxidation, such as 4-hydroxynonenal, 4-hydroxyhexenal and acrolein, as well as ß-cyclocitral derived from oxidation of ß-carotene, decreased. However, relative to total chlorophyll, amounts of most RES increased at late-senescence stages, alongside increased levels of α-tocopherol, zeaxanthin and non-photochemical quenching, an energy dissipative pathway that prevents ROS production. Overall, our results indicate that lipid peroxidation derived from enzymatic oxidation occurs early during senescence in first barley leaves, while ROS-derived lipid peroxidation associates weaker with senescence.


Assuntos
Hordeum , Peroxidação de Lipídeos , Hordeum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , alfa-Tocoferol/metabolismo , Galactolipídeos/metabolismo , Zeaxantinas/metabolismo , beta Caroteno/metabolismo , Acroleína/metabolismo , Folhas de Planta/fisiologia , Clorofila/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Linolênicos/metabolismo
18.
Colloids Surf B Biointerfaces ; 217: 112646, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35763897

RESUMO

The structural behavior of model assemblies composed of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), the two main galactolipids found in plants, was investigated at the air/water interface and in aqueous dispersion. To approach the composition of the natural photosynthetic membranes, tunable Langmuir model membrane of galactolipids (GL) were used, and were complexified to form either heterogenous binary or ternary assemblies of GL, phospholipids (PL), and phytosterols (pS). The impact of pS, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or both on the structural properties of GL membrane was studied. The nature of the interactions between the different molecules was investigated using biophysical characterizations (ellipsometry, tensiometry, atomic force microscopy). In addition, the phase behavior was determined by SAXS analysis on the model assemblies in aqueous dispersions. Results revealed the good interfacial stability of these specific plant membrane lipids. The morphology of the GL film was characteristic of a fluid phase, with an interfacial roughness induced by the intercalation of monogalactosyl and digalactosyl polar heads of MGDG and DGDG, respectively. A phase heterogeneity in the monolayer was induced by the addition of DPPC and/or pS, which resulted in the modification of galactolipid organization and headgroup interactions. These structural changes were confirmed by SAXS analysis, showing more favorable interactions between MGDG and DPPC than between DGDG and DPPC in aqueous dispersion. This phenomenon was exacerbated in the presence of pS.


Assuntos
Galactolipídeos , Fitosteróis , Galactolipídeos/química , Plantas , Espalhamento a Baixo Ângulo , Água , Difração de Raios X
19.
J Exp Bot ; 73(9): 2995-3003, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35560191

RESUMO

Plants that are starved of phosphate trigger membrane lipid remodeling, which hydrolyses phospholipids and presumably allows their phosphate to be utilized, whilst replacing them with galactolipids to maintain the integrity of the membrane system. In addition to the two concurrent pathways of phospholipid hydrolysis by phospholipases C and D that have already been established, an emerging third pathway has been proposed that includes a reaction step catalysed by glycerophosphodiester phosphodiesterases (GDPDs). However, its functional involvement in phosphate-starved plants remains elusive. Here, we show that Arabidopsis GDPD6 is a functional isoform responsible for glycerophosphocholine hydrolysis in vivo. Overexpression of GDPD6 promoted root growth whilst gdpd6 mutants showed impaired root growth under phosphate starvation, and this defect was rescued by supplementing with the reaction product glycerol 3-phosphate but not with choline. Since GDPD6 is induced by phosphate starvation, we suggest that GDPD6 might be involved in root growth via the production of glycerol 3-phosphate in phosphate-starved plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Galactolipídeos/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Fosfolipídeos/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo
20.
J Exp Bot ; 73(9): 2721-2734, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35560194

RESUMO

The appearance of oxygenic photosynthesis in cyanobacteria is a major event in evolution. It had an irreversible impact on the Earth, promoting the Great Oxygenation Event (GOE) ~2.4 billion years ago. Ancient cyanobacteria predating the GOE were Gloeobacter-type cells lacking thylakoids, which hosted photosystems in their cytoplasmic membrane. The driver of the GOE was proposed to be the transition from unicellular to filamentous cyanobacteria. However, the appearance of thylakoids expanded the photosynthetic surface to such an extent that it introduced a multiplier effect, which would be more coherent with an impact on the atmosphere. Primitive thylakoids self-organize as concentric parietal uninterrupted multilayers. There is no robust evidence for an origin of thylakoids via a vesicular-based scenario. This review reports studies supporting that hexagonal II-forming glucolipids and galactolipids at the periphery of the cytosolic membrane could be turned, within nanoseconds and without any external source of energy, into membrane multilayers. Comparison of lipid biosynthetic pathways shows that ancient cyanobacteria contained only one anionic lamellar-forming lipid, phosphatidylglycerol. The acquisition of sulfoquinovosyldiacylglycerol biosynthesis correlates with thylakoid emergence, possibly enabling sufficient provision of anionic lipids to trigger a hexagonal II-to-lamellar phase transition. With this non-vesicular lipid-phase transition, a framework is also available to re-examine the role of companion proteins in thylakoid biogenesis.


Assuntos
Cianobactérias , Tilacoides , Cianobactérias/metabolismo , Galactolipídeos/metabolismo , Fotossíntese , Tilacoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...